Salud

Un algoritmo podría reducir en gran medida el uso de antibióticos

Un nuevo estudio dirigido por investigadores del Harvard Pilgrim Health Care Institute, en Estados Unidos, ha desarrollado un algoritmo que podría reducir en gran medida el uso de antibióticos de amplio espectro en entornos ambulatorios, un paso hacia la reducción de la resistencia a los antibióticos, según publican en línea en la revista Science Translational Medicine.

Como recuerdan los autores, la resistencia a los antibióticos es una gran amenaza para la práctica de la medicina y está impulsada en gran parte por el uso excesivo de antibióticos.

Los entornos para pacientes ambulatorios son donde se prescribe la gran mayoría de los antibióticos, pero también donde hay menos herramientas disponibles para ayudar a los prescriptores a tomar decisiones de tratamiento óptimas.

Esto lleva a los proveedores a recetar antibióticos de amplio espectro en respuesta a un aumento real, así como percibido, en las tasas de infección resistente a los antibióticos.

Sin embargo, el uso de antibióticos de amplio espectro, que actúan contra una amplia gama de bacterias, promueve un círculo vicioso en el que el uso excesivo empeora aún más el problema de la resistencia a través de un circuito de retroalimentación positiva.

Un ejemplo es la Infección del Tracto Urinario (ITU), que es una razón muy común para el uso de antibióticos entre los pacientes ambulatorios.

Se ha prestado poca atención al desarrollo de herramientas eficaces de apoyo a la toma de decisiones para los prescriptores ambulatorios.

Los algoritmos se han utilizado para el apoyo de decisiones clínicas para enfermedades infecciosas desde la década de 1970, pero aún no se han adoptado ampliamente debido a las dificultades para integrarlos en prácticas clínicas ocupadas.

Sanjat Kanjilal, autor principal y profesor de medicina de poblaciones en el Harvard Pilgrim Health Care Institute y la Harvard Medical School, cree que ahora tenemos las herramientas para mejorar.

 

El apoyo de decisiones personalizado en el punto de atención puede ser una herramienta eficaz para administrar la prescripción de antibióticos para los síndromes infecciosos comunes”, señaló Sanjat Kanjilal.

Su solución es utilizar modelos de aprendizaje automático para predecir la probabilidad de resistencia a los antibióticos y luego traducir esas probabilidades en recomendaciones que ayuden a los prescriptores a tomar decisiones de tratamiento óptimas.

 

Nuestro estudio desarrolló un algoritmo de apoyo a la decisión personalizado para las infecciones urinarias como una solución al desafío de la prescripción de antibióticos en la era de la resistencia”, explicó Sanjat Kanjilal.

El estudio utilizó datos de los registros médicos de más de 13 mil mujeres con ITU sin complicaciones que recibieron atención en dos grandes hospitales de Boston entre 2007 y 2016.

Deja un comentario

Back to top button